Polynomials with only real zeros

K. Srimud
Department of Mathematics, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thailand
e-mail: kulprapa_s@hotmail.com

S. Tadee
Department of Mathematics, Chulalongkorn University, Bangkok 10330, Thailand
e-mail: s.tadee@hotmail.com

V. Laohakosol
Department of Mathematics, Kasetsart University, Bangkok 10900, Thailand
e-mail: fscivil@ku.ac.th

Abstract

Conditions which ensure that a combination of real polynomials, which have real interlacing zeros, continues to have only real zeros are derived. This gives a generalization of a result of Haglund and is proved using a unified method of Liu-Wang-Yeh.

Keywords: polynomials, real zeros, alternate, interlace

2000 Mathematics Subject Classification: 05A15, 05A20, 26C10

Supported by the Commission on Higher Education, the Thailand Research Fund RTA5180005, Thailand.
1 Introduction

Let

\[RZ = \{ P(x) \in \mathbb{R}[x]; P(x) \text{ has only real zeros} \} \]

\[PF = \{ P(x) \in RZ; \text{ all coefficients of } P(x) \in \mathbb{R}_{\geq 0} \}. \]

Let \(f, g \in RZ \) and let \(\{ r_i \} \) and \(\{ s_j \} \) be all respective zeros of \(f \) and \(g \) in non-increasing order. Following Wagner [6], we say that \(g \) alternates \(f \) if \(\deg f = \deg g = n \) and

\[s_n \leq r_n \leq s_{n-1} \leq \ldots \leq s_2 \leq r_2 \leq s_1 \leq r_1; \tag{1.1} \]

we say that \(g \) interlaces \(f \) if \(\deg f = \deg g + 1 = n \) and

\[r_n \leq s_{n-1} \leq \ldots \leq s_2 \leq r_2 \leq s_1 \leq r_1. \tag{1.2} \]

The notation \(g \preceq f \) denotes either \(g \) alternates \(f \) or \(g \) interlaces \(f \). If no equality sign occurs in (1.1) (respectively (1.2)), then we say that \(g \) strictly alternates \(f \) (respectively \(g \) strictly interlaces \(f \)). Let \(g \prec f \) denote either \(g \) strictly alternates \(f \) or \(g \) strictly interlaces \(f \).

Polynomials with only real zeros arise often in combinatorics and other branches of mathematics (see [1], [4]). Let \(a_0, a_1, \ldots \) be a sequence of nonnegative real numbers. It is unimodal if

\[a_0 \leq a_1 \leq \ldots \leq a_{k-1} \leq a_k \geq a_{k+1} \geq \ldots \text{ for some } k. \]

It is log-concave (LC), if

\[a_i a_{i+1} \leq a_{2i} \text{ for all } i > 0. \]

Log-concavity implies unimodality. Unimodal and log-concave sequences occur naturally in combinatorics, algebra, analysis, geometry, computer science, probability and statistics.

One classical approach to unimodality and log-concavity of a finite sequence is to use Newton’s inequality: if the polynomial \(\sum_{i=0}^{n} a_i x^i \) with positive coefficients has only real zeros, then

\[a_i^2 \geq a_{i-1}a_{i+1}(1 + \frac{1}{i})(1 + \frac{1}{n-i}) \]

for \(1 \leq i \leq n-1 \), and the sequence \(a_0, a_1, \ldots, a_n \) is therefore unimodal and log-concave. Such a sequence of positive numbers whose generating function has only real zeros is called a Pólya-frequency (or PF) sequence. A deeper results is the following theorem which provides the basic link between finite Pólya-frequency sequence and polynomials having only real zeros.

Aissen-Schoenberg-Whitney Theorem ([5]).

A finite sequence \(a_0, \ldots, a_n \) of nonnegative number is Pólya-frequency sequence if and only if its generating function \(\sum_{i=0}^{n} a_i x^i \) has only real zeros.

In 2005, Wang and Yeh, [5], proved the following results.
Polynomials with only real zeros

Theorem 1.1. (\[3, Theorem 1\]) Let \(f \) and \(g \) be real polynomials whose leading coefficients have the same sign. Suppose that \(f, g \in RZ \) and \(g \preceq f \). If \(ad \leq bc \), then \((ax + b)f(x) + (cx + d)g(x) \in RZ\).

Corollary 1.2. (\[3, Corollary 1\]) Suppose that \(f, g \in PF \) and \(g \) interlaces \(f \). If \(ad \geq bc \), then \((ax + b)f(x) + x(cx + d)g(x) \in RZ\).

In 2007, Liu and Wang, \[3\], gave the following sufficient conditions for a sequence of polynomials to have only real zeros based on the method of interlacing zeros:

Theorem 1.3. (\[3, Theorem 2.1\]) Let \(F, f, g \) be three real polynomials satisfying the following conditions;
(a) \(F(x) = a(x)f(x) + b(x)g(x) \) where \(a(x), b(x) \) are two real polynomials, such that \(\deg F = \deg f \) or \(\deg f + 1 \),
(b) \(f, g \in RZ \) and \(g \preceq f \),
(c) \(F \) and \(g \) have leading coefficients of the same sign,
(d) \(\forall r \in \mathbb{R}, f(r) = 0 \Rightarrow b(r) \leq 0 \).
Then \(F \in RZ \) and \(f \preceq F \). In particular, if \(g \prec f \) and \(b(r) < 0 \) whenever \(f(r) = 0 \), then \(f \prec F \).

Corollary 1.4. (\[3, Corollary 2.2\]) Let \(f \) and \(g \) be two real polynomials with positive leading coefficients \(\alpha \) and \(\beta \) respectively. Suppose that the following conditions are satisfied;
(a) \(f, g \in RZ \) and \(g \) interlaces \(f \),
(b) \(F(x) = (ax + b)f(x) + x(cx + d)g(x) \) where \(a, b, d \in \mathbb{R} \) with \(d \geq 0, d \geq b/a \) and either \(a > 0 \) or \(a < -\beta/\alpha \),
(c) all zeros of \(f \) are nonpositive if \(a > 0 \) and nonnegative if \(a < -\beta/\alpha \).
Then \(F \in RZ \). In addition, if each zero \(r \) of \(f \) satisfies \(-d \leq r \leq 0 \), then \(f \) interlaces \(F \).

Haglund in \[2\] used Corollary 1.4 to prove facts about rook polynomials in graph theory. Here we prove a generalization of Corollary 1.4 and give an example.

2 Result

Our main result is

Theorem 2.1. Let \(f \) and \(g \) be two real polynomials with both positive or both negative leading coefficients \(\alpha \) and \(\beta \) respectively. Suppose that the following conditions are satisfied;
(a) \(f, g \in RZ \) and \(g \) interlaces \(f \),
(b) \(F(x) = (ax + b)f(x) + x(cx + d)g(x) \) where \(a, b, c, d \in \mathbb{R} \) with \(a \neq 0 \) and \(d \geq bc/a \),

(c) if \(a > 0 \), then all zeros of \(f \) are nonpositive,

(d) if \(a < 0 \), then all zeros of \(f \) are nonnegative.

Then \(F \in \text{RZ} \). In addition, if \(c > 0 \) and \(-d/c \leq r \leq 0 \) for each zero \(r \) of \(f \), then \(f \) interlaces \(F \). If \(c = 0 \) and \(r \leq 0 \) for each zero \(r \) of \(f \), then \(f \) interlaces \(F \).

Proof. Let \(n \in \mathbb{N} \),

\[
f(x) := \alpha_n x^n + \alpha_{n-1} x^{n-1} + \cdots + \alpha_1 x + \alpha_0 \in \mathbb{R}[x],
\]

and \(\alpha = \alpha_n \). Since \(g \) interlaces \(f \), then \(\deg g = n - 1 \). We distinguish two possibilities.

First, assume \(\alpha \) and \(\beta \) are positive.

If \(a > 0 \), by (c) we have \(r \leq 0 \) for each zero of \(f \). Thus, all coefficients of \(f \) are nonnegative, i.e., \(f \in \text{PF} \). Since \(g \) interlaces \(f \), we have \(g \in \text{PF} \). By Corollary \[1.2\] and \(ad \geq bc \), we deduce that \(F \in \text{RZ} \).

If \(a < 0 \), by (d) we have \(r \geq 0 \) for each zero of \(f \). By (a), all zeros of \(g \) are nonnegative. Thus, all coefficients of \(f \) and \(g \) are alternating in sign. Since \(\alpha \) is positive and all coefficients of \(f \) are alternating in sign, we see that \((-1)^i \alpha_{n-i} \geq 0 \) \((0 \leq i \leq n)\). Let

\[
f_1(x) := (-1)^n f(-x), \quad g_1(x) := (-1)^{n-1} g(-x) \quad \text{and} \quad F_1(x) := (-1)^n F(-x).
\]

We have

\[
f_1(x) = (-1)^n f(-x) = (-1)^n [\alpha_n(-x)^n + \alpha_{n-1}(-x)^{n-1} + \cdots + \alpha_1(-x) + \alpha_0]
= \alpha_n x^n + (-1)\alpha_{n-1} x^{n-1} + \cdots + (-1)^{n-1} \alpha_1 x + (-1)^n \alpha_0,
\]

and so all coefficients of \(f_1(x) \) are nonnegative, i.e., \(f_1 \in \text{PF} \). Similarly, \(g_1 \in \text{PF} \). Since \(g \) interlaces \(f \), the polynomial \(g_1 \) also interlaces \(f_1 \). From

\[
F_1(x) = (-1)^n F(-x) = (-1)^n [(a(-x) + b)f(-x) - x(c(-x) + d)g(-x)]
= (-ax + b)(-1)^n f(-x) + x(-cx + d)(-1)^n g(-x)
= (-ax + b)f_1(x) + x(-cx + d)g_1(x),
\]

since \(a < 0 \) and \(d \geq bc/a \), we get \(ad \leq bc \), and so \((-a)d \geq b(-c)\). By Corollary \[1.2\] \(F_1(x) \in \text{RZ} \) yielding \(F(x) \in \text{RZ} \).

The remaining possibility is when \(\alpha \) and \(\beta \) are negative.

If \(a > 0 \), by (c), we have \(r \leq 0 \) for each zero \(r \) of \(f \). Thus, all coefficients of \(f \) are nonpositive. Since \(g \) interlace \(f \), all coefficients of \(g \) are also nonpositive. Let

\[
f_2(x) := -f(x), \quad g_2(x) := -g(x).
\]
Thus, $f_2, g_2 \in PF$ and g_2 interlace f_2. From

$$-F(x) = (ax + b)(-f(x)) + x(cx + d)(-g(x)) = (ax + b)f_2(x) + x(cx + d)g_2(x),$$

since $a > 0$ and $d \geq bc/a$, Corollary 1.2 implies $-F(x) \in RZ$, and so $F(x) \in RZ$.

If $a < 0$, by (d) all zero r of f are nonnegative. Thus, the coefficients of f and g are alternating in sign. Since α is negative, we get $(-1)^{i} \alpha_{n-i} \leq 0$ ($0 \leq i \leq n$).

Let

$$f_3(x) := (-1)^{n+1}f(-x), \quad g_3(x) := (-1)^{n}g(-x), \quad F_3(x) := (-1)^{n+1}F(-x).$$

From

$$f_3(x) = (-1)^{n+1}f(-x) = (-1)^{n+1}[\alpha_n(-x)^n + \alpha_{n-1}(-x)^{n-1} + \cdots + \alpha_1(-x) + \alpha_0]$$

$$= (-1)\alpha_n x^n + (-1)^{n-1}2\alpha_{n-1} x^{n-1} + \cdots + (-1)^n \alpha_1 x + (-1)^{n+1} \alpha_0,$$

we see that all coefficients of $f_3(x)$ are nonnegative, i.e., $f_3 \in PF$. Similarly, $g_3 \in PF$ and g_3 interlaces f_3. Thus,

$$F_3(x) = (-1)^{n+1}[(-ax + b)f(-x) - x(-cx + d)g(-x)]$$

$$= (-ax + b)(-1)^{n+1}f(-x) + x(-cx + d)(-1)^n g(-x)$$

$$= (-ax + b)f_3(x) + x(-cx + d)g_3(x).$$

Since $a < 0$ and $d \geq bc/a$, we have $(-a)d \geq b(-c)$, and so $F_3 \in RZ$ showing that $F \in RZ$.

There remains to check the final two additional assertions.

If $c > 0$ and $-d/c \leq r \leq 0$, for each zero r of f, then $r(c \tau + d) \leq 0$. If the leading coefficient of f and F have same sign, by Theorem 1.3, f interlaces F. If the leading coefficient of f and F have different sign, then $a < 0$. From (d), each zero r of f is nonnegative. This implies that the zeros of f can only be 0, and so $f(x) = \alpha x^n$, $g(x) = \beta x^{n-1}$. Thus,

$$F(x) = (ax + b)(\alpha x^n) + x(cx + d)(\beta x^{n-1}) = (\alpha \alpha + c\beta)x^{n+1} + (b\alpha + d\beta)x^n$$

$$= x^n[(\alpha \alpha + c\beta)x + (b\alpha + d\beta)]$$

showing that f interlace F.

If $c = 0$ and $r \leq 0$ for each zero r of f, we treat two cases separately.

Case $a < 0$. By (d), we have $r \geq 0$ for each zero r of f. We must then have $r = 0$, and so $f(x) = \alpha x^n$ and $g(x) = \beta x^{n-1}$, by (a). From

$$F(x) = (ax + b)f(x) + (dx)g(x) = (ax + b)\alpha x^n + (dx)\beta x^{n-1}$$

$$= (\alpha ax + b\alpha + d\beta)x^n,$$
we conclude that f interlaces F.

Case $a > 0$. By (b), the leading coefficients of F and g have same sign. Since $c = 0$ and $d \geq bc/a$, we get $d \geq 0$ and so $dr \leq 0$ for each zero r of f. By (b), we get $\deg F = \deg f + 1$, and by Theorem 1.3, we conclude that f interlace F. \square

We end this note with an example.

Example 2.2. Let $f(x) = -x^2 - 4x - 3$, $g(x) = -x - 2$, $a = 2$, $b = 3$, $c = 2$ and $d = 8$. We have $F(x) = -4x^3 - 23x^2 - 34x - 9$ such that all zeros of F are ≈ -3.51235, ≈ -1.9006 and ≈ -0.33705. Thus $F \in RZ$ and f interlaces F.

References

